首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2474篇
  免费   344篇
  国内免费   255篇
  2023年   92篇
  2022年   37篇
  2021年   95篇
  2020年   113篇
  2019年   135篇
  2018年   117篇
  2017年   101篇
  2016年   104篇
  2015年   110篇
  2014年   117篇
  2013年   154篇
  2012年   99篇
  2011年   81篇
  2010年   79篇
  2009年   137篇
  2008年   138篇
  2007年   137篇
  2006年   149篇
  2005年   136篇
  2004年   97篇
  2003年   92篇
  2002年   78篇
  2001年   92篇
  2000年   89篇
  1999年   66篇
  1998年   61篇
  1997年   52篇
  1996年   35篇
  1995年   30篇
  1994年   37篇
  1993年   28篇
  1992年   25篇
  1991年   21篇
  1990年   19篇
  1989年   14篇
  1988年   13篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   12篇
  1983年   5篇
  1982年   13篇
  1981年   3篇
  1980年   9篇
  1979年   5篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1958年   1篇
排序方式: 共有3073条查询结果,搜索用时 673 毫秒
1.
In this paper very simple nonparametric classification rule for mixtures of discrete and continuous random variables is described. It is based on the method of nearest neighbor proposed by Cover and Hart (1967). The bounds on the limit of the nearest neighbor rule risks are given. Both lower and upper bound depend on the Bayes risk and the loss function. Finally the method is compared with other existing methods on some practical data set.  相似文献   
2.
  1. Assemblages of insect herbivores are structured by plant traits such as nutrient content, secondary metabolites, physical traits, and phenology. Many of these traits are phylogenetically conserved, implying a decrease in trait similarity with increasing phylogenetic distance of the host plant taxa. Thus, a metric of phylogenetic distances and relationships can be considered a proxy for phylogenetically conserved plant traits and used to predict variation in herbivorous insect assemblages among co‐occurring plant species.
  2. Using a Holarctic dataset of exposed‐feeding and shelter‐building caterpillars, we aimed at showing how phylogenetic relationships among host plants explain compositional changes and characteristics of herbivore assemblages.
  3. Our plant–caterpillar network data derived from plot‐based samplings at three different continents included >28,000 individual caterpillar–plant interactions. We tested whether increasing phylogenetic distance of the host plants leads to a decrease in caterpillar assemblage overlap. We further investigated to what degree phylogenetic isolation of a host tree species within the local community explains abundance, density, richness, and mean specialization of its associated caterpillar assemblage.
  4. The overlap of caterpillar assemblages decreased with increasing phylogenetic distance among the host tree species. Phylogenetic isolation of a host plant within the local plant community was correlated with lower richness and mean specialization of the associated caterpillar assemblages. Phylogenetic isolation had no effect on caterpillar abundance or density. The effects of plant phylogeny were consistent across exposed‐feeding and shelter‐building caterpillars.
  5. Our study reveals that distance metrics obtained from host plant phylogeny are useful predictors to explain compositional turnover among hosts and host‐specific variations in richness and mean specialization of associated insect herbivore assemblages in temperate broadleaf forests. As phylogenetic information of plant communities is becoming increasingly available, further large‐scale studies are needed to investigate to what degree plant phylogeny structures herbivore assemblages in other biomes and ecosystems.
  相似文献   
3.
For the estimation of population mean in simple random sampling, an efficient regression-type estimator is proposed which is more efficient than the conventional regression estimator and hence than mean per unit estimator, ratio and product estimators and many other estimators proposed by various authors. Some numerical examples are included for illustration.  相似文献   
4.
Biologists and philosophers have been extremely pessimistic about the possibility of demonstrating random drift in nature, particularly when it comes to distinguishing random drift from natural selection. However, examination of a historical case – Maxime Lamotte’s study of natural populations of the land snail, Cepaea nemoralis in the 1950s – shows that while some pessimism is warranted, it has been overstated. Indeed, by describing a unique signature for drift and showing that this signature obtained in the populations under study, Lamotte was able to make a good case for a significant role for␣drift. It may be difficult to disentangle the causes of drift and selection acting in a population, but it is not (always) impossible.  相似文献   
5.
In order to map quantitative trait loci (QTLs) for allometries of body compositions and metabolic traits in chicken, we phenotypically characterize the allometric growths of multiple body components and metabolic traits relative to BWs using joint allometric scaling models and then establish random regression models (RRMs) to fit genetic effects of markers and minor polygenes derived from the pedigree on the allometric scalings. Prior to statistically inferring the QTLs for the allometric scalings by solving the RRMs, the LASSO technique is adopted to rapidly shrink most of marker genetic effects to zero. Computer simulation analysis confirms the reliability and adaptability of the so-called LASSO-RRM mapping method. In the F2 population constructed by multiple families, we formulate two joint allometric scaling models of body compositions and metabolic traits, in which six of nine body compositions are tested as significant, while six of eight metabolic traits are as significant. For body compositions, a total of 14 QTLs, of which 9 dominant, were detected to be associated with the allometric scalings of drumstick, fat, heart, shank, liver and spleen to BWs; while for metabolic traits, a total of 19 QTLs also including 9 dominant be responsible for the allometries of T4, IGFI, IGFII, GLC, INS, IGR to BWs. The detectable QTLs or highly linked markers can be used to regulate relative growths of the body components and metabolic traits to BWs in marker-assisted breeding of chickens.  相似文献   
6.
The stereotyped pacing shown by the two Amur tigers in the Zurich Zoo was hypothesized as being caused by permanently frustrated appetitive foraging behavior. Several electrically controlled feeding boxes were installed and access to each box was possible only twice a day for 15 min at semi‐random times. The boxes had to be opened actively by the tigers. Two trials were carried out: one with solitary confinement, and one with paired confinement. During box feeding, the female's stereotyped pacing was significantly reduced from 16% (solitary confinement, conventional feeding) and 7% (paired confinement, conventional feeding) to 1% (solitary confinement) and less than 0.01% (paired confinement) of the daily observed time. The female's sleeping increased significantly in both solitary and paired confinement. The male only showed a significant reduction in stereotyped pacing behavior when kept with the female (conventional feeding: 10%; box feeding: <0.01% of the daily observed time). On days with a box‐feeding regime in paired confinement, the male spent 25% (83 min) of the observed time with active behavior at the feeding boxes. The results support the hypothesis that permanently frustrated appetitive foraging behavior causes stereotyped pacing in adult tigers. Zoo Biol 21:573–584, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   
7.
Antibodies provide a comprehensive record of the encounters with threats and insults to the immune system. The ability to examine the repertoire of antibodies in serum and discover those that best represent “discriminating features” characteristic of various clinical situations, is potentially very useful. Recently, phage display technologies combined with Next-Generation Sequencing (NGS) produced a powerful experimental methodology, coined “Deep-Panning”, in which the spectrum of serum antibodies is probed. In order to extract meaningful biological insights from the tens of millions of affinity-selected peptides generated by Deep-Panning, advanced bioinformatics algorithms are a must. In this study, we describe Motifier, a computational pipeline comprised of a set of algorithms that systematically generates discriminatory peptide motifs based on the affinity-selected peptides identified by Deep-Panning. These motifs are shown to effectively characterize antibody binding activities and through the implementation of machine-learning protocols are shown to accurately classify complex antibody mixtures representing various biological conditions.  相似文献   
8.
9.
10.
1. Ecosystem processes depend on the biomass of the involved organisms, but their functional diversity may play an additional role. In particular, the exclusion of key functional groups through habitat disturbance may lead to the breakdown of ecosystem functions. Dung removal is an important process contributing to nutrient cycling and thus productivity in grazed ecosystems. 2. This study investigated the role of different functional groups of dung beetles in dung removal in different habitats within a wood-pasture in two different seasons. An experimental setting with 12 blocks and 108 dung pads was used to investigate short-term dung removal over 1 week of exposure. 3. Dung removal was most strongly affected by habitat type, with almost 40% lower levels in grassland than in adjacent forest and forest gaps. Of all assemblage characteristics, total biomass of tunneller species was the strongest predictor of dung removal, whereas functional diversity showed no significant effect. In accordance with the dung removal pattern at habitat type level, densities of large tunnellers were suppressed in grassland compared with forest. 4. It is concluded that dung removal is habitat-specific and large tunnellers play a disproportionate role in this important ecosystem function in temperate forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号